- Zermelo- Fraenkel Axiom
- Mathematics: ZFA
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
Zermelo–Fraenkel set theory — Zermelo–Fraenkel set theory, with the axiom of choice, commonly abbreviated ZFC, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics.ZFC consists of a single primitive ontological notion, that of… … Wikipedia
Zermelo-Fraenkel-Mengenlehre — Die Zermelo Fraenkel Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo Fraenkel Mengenlehre ohne… … Deutsch Wikipedia
Zermelo Fraenkel — Die Zermelo Fraenkel Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo Fraenkel Mengenlehre ohne… … Deutsch Wikipedia
Zermelo–Fraenkel set theory — The first rigorous axiomatization of set theory was presented by Ernst Zermelo (1871–1953) in 1908, and its development by A. A. Fraenkel (1891–1965), adding the axiom of replacement, is known as ZF. If the axiom of choice is added it is known as … Philosophy dictionary
Axiomas de Zermelo-Fraenkel — Los axiomas de Zermelo Fraenkel, formulados por Ernst Zermelo y Adolf Fraenkel, son un sistema axiomático concebido para formular la teoría de conjuntos. Normalmente se abrevian como ZF o en su forma más común, complementados por el axioma de… … Wikipedia Español
Axiom of power set — In mathematics, the axiom of power set is one of the Zermelo Fraenkel axioms of axiomatic set theory.In the formal language of the Zermelo Fraenkel axioms, the axiom reads::forall A , exists P , forall B , [B in P iff forall C , (C in B… … Wikipedia
Zermelo set theory — Zermelo set theory, as set out in an important paper in 1908 by Ernst Zermelo, is the ancestor of modern set theory. It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article… … Wikipedia
Zermelo-Mengenlehre — Die Zermelo Mengenlehre ist die erste axiomatische Mengenlehre; sie stammt von Ernst Zermelo und ist datiert auf den 30. Juli 1907. Sie wurde am 13. Februar 1908 in Band 65 (2. Heft) der Mathematischen Annalen unter dem Titel Untersuchungen über… … Deutsch Wikipedia
Axiom of choice — This article is about the mathematical concept. For the band named after it, see Axiom of Choice (band). In mathematics, the axiom of choice, or AC, is an axiom of set theory stating that for every family of nonempty sets there exists a family of … Wikipedia
Axiom schema of replacement — In set theory, the axiom schema of replacement is a schema of axioms in Zermelo Fraenkel set theory (ZFC) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite… … Wikipedia
Axiom of regularity — In mathematics, the axiom of regularity (also known as the axiom of foundation) is one of the axioms of Zermelo Fraenkel set theory and was introduced by harvtxt|von Neumann|1925. In first order logic the axiom reads::forall A (exists B (B in A)… … Wikipedia